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Abstract
Background Over the last two decades the advances in
analysis techniques for physiological time series data have
been moving from the classical statistics to a more
nonlinear or chaos based approach to looking at patterns
in the variability of the time series. From this work it can be
shown that physiological time series exhibit complex multi-
fractal properties. So by designing a classification based on
this nonlinear and chaotic nature you can detect changes
and alterations in the underlying physiological processes.
Methods Applying a proven relationship between the
wavelet modulus maxima representation and the Hölder
exponent we could assess the multi fractal nature of the of
the signal detection underlying changes in the physiology.
Using two distinct techniques one global and the other
localised in time, classification of two distinct the time
series was carried out firstly via the analysis of the
distribution of the Hölder exponents over all scales of the
signal and secondly via a moving window application of
the mean Hölder function.
Findings The distribution methodology did not return
significant results though this is probably more to do with
the signal than the technique. The trending approach shows
a predictive nature with slope being linked to increased
instability in the signal content.
Conclusions Overall this study has shown the applicability
of the techniques which definitely warrant further refine-
ment and study.
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Introduction

Over the last two decades analysis techniques are moving
from classical stochastic process analysis using basic
statistics to more nonlinear systems or chaos theoretical
based approaches which are looking at patterns in the
variability of the time series.

It has been shown that physiological time series exhibit
complex multi-fractal properties [1]. So by designing a
classification and analysis based on this nonlinear and
chaotic nature of the time series we should be able to detect
changes and alterations in the underlying physiological
processes. To this end two different analysis scenarios were
tested. Firstly looking at the overall wave form and
characterising its fractal nature and secondly looking at
the trending of a window of its fractal nature with time.

Materials

We studied a number of randomly selected ICP waveforms
from the BrainIT dataset (http://www.BrainIT.org) and used
the R [4] statistical package for algorithm implementation
and analysis.

Methods

The main idea used in the initial analysis and fractal
characterisation of the wave form leverages the relationship
between the mathematical properties of a wavelet transform
and a signals’ localised fractal nature.
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Wavelets [3] can be thought of as a time–frequency
analysis technique analogous to a Fourier transform but
without the inherent frequency related problems of the later
approach. This is mitigated by the fact the convolution is
carried out with a scaling factor and a translational factor
applied to the convolving function. Like Fourier transforms
they can either be continuous or discrete the former
implying that all scales are calculated the later only integer
scales. The actual transform is carried out via Eq. 1:
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This is a scalable convolution with the = function being
called a mother wavelet function and the scaled “s” and
translated “b” function is known as a daughter function. In
all of the later analytic tests a Mexican hat wavelet mother
wavelet (Eq. 2) was used:
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� �

e�p=2; ð2Þ
which is the second derivative of the Gaussian function.
Figure 1 below is an example analysis using the above
mother function on an ICP wave form.

Mandelbrot [2] defines a fractal as self similar signals
repeating at different scales within the same signal. He also
defines the Hurst exponent as a way of characterisation of
the scaling properties of the signal that then can be thought
of as an overview of the whole signal. However as we are
interested in the signal on a more localised level, there is a
related value known as the Hölder exponent [5]. This
essentially characterises the singularities of a signal at a
single scale level. Where a singularity is defined to be a
discontinuity in a signal where the differential of the signal
is not continuous at that point. It can be shown that the
Taylor expansion [6] of the wavelet transform that Eq. 3
holds over the set of all singularities of the time series:

Wf s; x0ð Þ ffi sj jh x0ð Þ ð3Þ

where x0 is the set of all singularities, h(x0) is defined to be
the Hölder exponent of the singularity at x0 however
calculation of “h” by this method is not efficient but by
using an optimised partitioning function and counting
argument [6] the “local” Hölder exponent can be calculated.

Firstly the wavelet modulus maxima transform
(WMMT) is performed and then the ridges are extracted
from this view [5]. This ridge representation of the signal is

Fig. 1 a Original ICP wave
form, b a 2d wavelet modulus
maxima transformation of a, c a
3d representation of b, d ridge
extraction from b
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all that is required to calculate the local Hölder exponent;
this should make the analysis more efficient as no
redundant information needs to be processed. This form is
in fact a representation of all the singularities in the signal.

(Fig. 1b,d). Then by using a partitioning function 4 over the
set of all singularities Ω(s) at a given scale “s”:

Z s; qð Þ ¼
X

Ω sð Þ
Wf wi sð Þð Þð Þq ð4Þ

Fig. 2 Comparison of stable (a) and changing (b) local Hölder exponent distributions over all scales

Fig. 3 ICP signal (a) and corresponding mean Hölder exponent trend (b)
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we can define the mean wavelet transform value of all
singularities at that scale s to be (Eq. 5):

M sð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Z s; 2ð Þ
Z s; 0ð Þ

s

: ð5Þ

Finally, the mean Hölder (h) is then calculated by
solving for the slope of the straight line function 6:

log M sð Þð Þ ¼ h log sð Þ þ C: ð6Þ

It can then be shown [6] that the local Hölder exponent
at scale s is calculated by Eq. 7:

ĥsSLslo
ffi log Wf sloð Þð Þ � log M sð Þð Þ

log sloð Þ � log sSLð Þ ð7Þ

where slo is the minimum scale used and sSL is the sample
length.

This paradigm can be understood in terms that the signal is
caused by the physiological system and this signal contains
fractal content or information which is directly related to the
underlying physiology. This implies that changes to physiol-
ogy will directly alter the signal and hence the information
contained within. By using the above analysis techniques we
gain an overview of this fractal information. To test these
ideas, two general applications of the above method are
presented; Firstly a global signal overview by looking at local
Hölder distributions and secondly a more localised view of
the data looking at the trending of the mean Hölder exponent.

This first methodology can be thought of as an overview
of the signals local Hölder exponent as a global look at the
nature of the singularities of the time series and it should
present a snap shot of the underlying physiology across the
time range something akin to a fingerprint of the signal.
ICP wave form data from a random patient was sampled
from the BrainIT database and was split into a number of
equal lengths. A “stable” segment where the signal remains
relatively steady and the amplitude of the number of
singularities remain low and a “changing” section, where
the signal becomes more unstable and the amount and
amplitude of the signal singularities increases. The local
Hölder exponent calculated for each of these sections and
the distribution of the local Hölder was then plotted and
analysed over all scales (Fig. 2).

The second analysis technique to be applied looks at the
change or trend in the mean Hölder calculation over the full
time course of a signal. It could be thought of as a moving
average approach to looking at the Hölder exponents of a
signal. This should represent the time course of changes in
physiology of the patient.

Again six ICP wave form signals were randomly
sampled from the BrainIT dataset and these were then
cleaned and a moving window approach was created to
allow the repeated application of the mean Hölder function
along the time course of the original signal. The window
size used for this analysis was 200 min with a 100-min
overlap. The choice of this window size was arbitrarily
defined by the signal length from previous testing. Once
this approach was applied to the signals a linear regression
was applied to give an over all trend for the calculated
mean Hölder exponents (Fig. 3).

Results

For the first analysis looking at the distributions, as can be
seen from (Fig. 2) there is not much if any separation in the
distributions and this is representative of all samples tested. In
the analysis on trending of the mean Hölder it can be seen to
be inversely proportional to signal fractal information content.
However quantification of this is difficult as we would need
an independent measure of the stability to statistically compare
it with the trend gradient. That said over all the samples tested
the gradient does show a predictive ability (Fig. 3).

Discussion

In the first analysis the lack of separation is not totally
unexpected as the differences in the ICP signals tested
between stable and changing sections are not greatly different
mathematically, minimally deterministic and based on more
random processes and so less likely to have much fractal
“information” content. If this is the case then this technique
should be then aimed at more deterministic signals such as
looking at B wave activity in the ICP trend for example.

In the second analysis the predictive nature of this technique
is a promising start though it will require further study to firstly
statistically prove and secondly to find the optimal size for the
moving window and still provide enough signal to accurately
represent it with the mean Hölder exponent.

Overall this pilot study has shown the applicability of the
techniques and as such it has only scratched the surface of
how these approaches could be applied and of the implica-
tions of the links between the physiological systems and the
fractal information content of the signals they produce.
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